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Abstract

The popular model-free approach to analyze NMR relaxation measurements has been examined using artificial
amide 15N relaxation data sets generated from a 10 nanosecond molecular dynamics trajectory of a dihydrofolate
reductase ternary complex in explicit water. With access to a detailed picture of the underlying internal motions, the
efficacy of model-free analysis and impact of model selection protocols on the interpretation of NMR data can be
studied. In the limit of uncorrelated global tumbling and internal motions, fitting the relaxation data to the model-
free models can recover a significant amount of quantitative information on the internal dynamics. Despite a slight
overestimation, the generalized order parameter is quite accurately determined. However, the model-free analysis
appears to be insensitive to the presence of nanosecond time scale motions with relatively small magnitude. For
such cases, the effective correlation time can be significantly underestimated. As a result, proteins appear to be
more rigid than they really are. The model selection protocols have a major impact on the information one can
reliably obtain. The commonly employed protocol based on step-up hypothesis testing has severe drawbacks of
oversimplification and underfitting. The consequences are that the order parameter is more severely overestimated
and the correlation time more severely underestimated. Instead, model selection based on Bayesian Information
Criteria (BIC), recently introduced to the model-free analysis by d’Auvergne and Gooley (2003), provides a better
balance between bias and variance. More appropriate models can be selected, leading to improved estimate of both
the order parameter and correlation time. In addition, the computational cost is significantly reduced and subjective
parameters such as the significance level are unnecessary.

Abbreviations: MD – Molecular Dynamics; NMR – Nuclear Magnetic Resonance; DHFR – Escherichia coli
dihydrofolate reducase; T1 – longitudinal relaxation time constant; T2 – transverse relaxation time constant; NOE
– Nuclear Overhauser Effect; AIC – Akaike’s Information Criteria; BIC – Bayesian Information Criteria; CSA –
Chemical Shift Anisotropy.

Introduction

It is generally believed that the internal dynamics of
proteins play an important role in their biological func-
tion (Brooks et al., 1988; Ishima and Torchia, 2000).
Nuclear Magnetic Resonance (NMR) spectroscopy is
one of the most powerful experimental techniques for
characterization of protein dynamics (Osorne et al.,
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2001). Motions over a large range of time scales
can be probed at an atomic level. In particular, in-
formation about fast atomic motions on picosecond
to nanosecond (ps-ns) time scale is encoded in the
much slower relaxation processes of nuclear spins. In
standard NMR relaxation experiments three relaxation
constants, R1, R2 and NOE, are measured at many
sites along the backbone and in the side chains using
isotopically labeled proteins, sometimes, at multiple
magnetic fields. Site specific information about the
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amplitude and time scale of internal motions can be
derived from these measurements and provide import-
ant insights into protein function (Lipari and Szabo,
1982; Palmer, 2001). In turn, thermodynamic para-
meters which might reflect the change of conform-
ational entropy upon binding can be also estimated
(Yang and Kay, 1996; Wrabl et al., 2000; Wand,
2001). Unfortunately, the understanding of internal
dynamics of proteins has been hampered by ambigu-
ities in interpreting the relaxation data. Due to the
limited number of measurements, intrinsically com-
plex internal motions have to be approximated by
simple models with only a few parameters. Assuming
that the global and internal motions are separable, the
widely used model-free formalism (Lipari and Szabo,
1982; Clore et al., 1990) characterizes internal dy-
namics in terms of generalized order parameters and
time constants, which are motional model independent
measurements of the degree of spatial restriction and
rate of internal motions respectively. However, how
well these simplified models can capture the essential
features of protein dynamics is not clear. Additional
complications also arise from ambiguities in selecting
the best model-free models to fit the experimental data.

Another important tool for studying protein dy-
namics is molecular dynamics (MD) simulations
(Brooks et al., 1988). MD simulations of proteins
have become increasingly important and useful, par-
tially due to the development of more realistic force
fields and access to ever increasing computational
power (Karplus and McCammon, 2002). Actually, it
has always played an important role in interpreting
biomolecular NMR experimental data (Levy et al.,
1981; Brunger et al., 1998; Case, 2002; Prompers
and Brüschweiler, 2002). MD is particularly power-
ful in simulating the ps/ns time scale motions that are
relevant to NMR relaxation and provides an effective
approach to evaluate various methods for analyzing
NMR relaxation data. In the present study, we util-
ize information from nanosecond MD simulations of a
protein complex and try to address the following ques-
tions. First, in the limit of uncoupled global molecular
tumbling and local diffusion, how much information
about the internal dynamics of proteins can be accur-
ately recovered from the model-free analysis? Second,
what is the optimal protocol for model selection and
what are the impacts of model selection protocols on
the results of model-free analysis? By constructing ar-
tificial backbone amide 15N relaxation data from long
MD trajectories, a detailed picture of the underlying

internal motions is accessible. It is thus possible to
address these questions in an unambiguous way.

Theory and methods

NMR relaxation theory

Experimental methods have been developed for the
measurement of R1, R2 and the heteronuclear NOE
of amide 15N in protein backbone and side chains
(Palmer, 2001). The theory of NMR relaxation has
been extensively described (Abragam, 1961; Lipari
and Szabo, 1982; Brüschweiler et al., 1992; Cavanagh
et al., 1996) and is only summarized here. When
cross-correlation effects are suppressed, the amide 15N
nuclear spin relaxes primarily due to dipolar interac-
tion with the directly attached 1H spin and through 15N
Chemical Shift Anisotropy (CSA). The relaxation con-
stants are determined by the spectral density functions,
J (ω), according to,

R1 = d2

4
[3J (ωN) + J (ωH − ωN) +

6J (ωH + ωN)] + c2

3
J (ωN) , (1)

R2 = d2

8
[4J (0) + 3J (ωN) + J (ωH − ωN) +

6J (ωH) + 6J (ωH + ωN)] +
c2

18
[4J (0) + 3J (ωN)] + Rex , (2)

NOE = 1 + d2

4R1

γH

γN
[6J (ωH + ωN) −

J (ωH − ωN)] , (3)

where d = (µ0hγHγN/8π2) < r−3
NH > and c =

�σωN; µ0 is the permeability of free space; h is
Planck’s constant; γH and γN are the gyromagnetic
ratios of 1H and 15N; rNH is the length of the N-H
bond; �σ is the CSA of 15N; ωH and ωN are the Lar-
mor frequencies of 1H and 15N. Rex is introduced to
account for other processes that contribute to R2. Usu-
ally a non-zero Rex implies the presence of motions
on the microsecond to millisecond time scale. The
CSA tensor is assumed to be axially symmetric with
a principal axis which is co-linear to the N-H bond
vector. For typical magnetic fields available at present,
ωN and ωH range from 50 MHz up to 900 MHz. Thus,
NMR relaxation is particularly sensitive to motions on
ps/ns time scales.
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The spectral density function is the Fourier trans-
form of the angular auto-correlation function, C(t), of
the N-H bond vector,

J (ω) = 2
∫ ∞

0
C(t) cos ωt dt . (4)

The correlation function describes reorientation of the
N-H bond vector due to both the overall molecular
tumbling and internal dynamics. Assuming that the
overall molecular tumbling is much slower than the in-
ternal motions, one can decompose C(t) as (Wallach,
1967)

C(t) = CO(t) CI(t) , (5)

where CO(t) and CI(t) are the correlation functions for
the overall tumbling and internal motions respectively.
When the molecular tumbling is isotropic, the overall
motion can be described by a single correlation time,
τ−1

M = 6DM, i.e.,

Ciso
O (t) = 1

5
e−t/τM , (6)

where DM is the isotropic rotational diffusion con-
stant. For the more general case of axially symmetric
rotational diffusion, the overall correlation function
can be represented by (Woessner, 1962)

Caxial
O (t) = 1

5
(A1e

−t/τ1 + A2e
−t/τ2 + A3e

−t/τ3) , (7)

with A1 = (1.5 cos2 α − 0.5)2, A2 = 3 sin2 α cos2 α,
and A3 = 0.75 sin4 α, where α is the angle between
the N-H bond vector and principal axis of the ro-
tational diffusion tensor. The diffusional correlation
times are τ−1

1 = 6D⊥, τ−1
2 = D‖ + 5D⊥, and τ−1

3 =
4D‖ + 2D⊥, where D⊥ = Dx = Dy , and Dz = D‖,
with Dx,Dy and Dz being the diagonal elements of
the rotational diffusion tensor. The internal correlation
function is given as

CI(t) =< P2(µ̂(0) · µ̂(t)) > , (8)

where the second Legendre polynomial P2(x) =
(3x2 − 1)/2, and the unit vector µ̂ describes the
orientation of the N-H bond vector in the molecular
reference frame.

Model-free analysis

As shown in Equations 1–3, the relaxation constants
are determined by the spectral densities at five charac-
teristic frequencies. With the limit of three relaxation
measurements at each magnetic field, all five values

cannot be determined. In such cases, a reduced spec-
tral density mapping (Peng and Wagner, 1992; Farrow
et al., 1995) can be used. However, the more popular
approach is to use the so-called model-free formalism
(Lipari and Szabo, 1982; Clore et al., 1990). The un-
known spectral density function, or equivalently, the
internal correlation function, is modeled by simple
analytical functions that depend on a few ‘model-free’
parameters. For example, the internal dynamics can be
simply characterized by two motional parameters,

CI(t) = S2 + (1 − S2) e−t/τe , (9)

in which the squared generalized order parameter,
S2 = CI(∞), reflects the amplitude of the internal
motions and the time constant, τe, in this case, equals
to the integrated correlation time, τeff, defined as

τeff = 1

CI(0) − CI(∞)

∫ ∞

0
(CI(t) − CI(∞)) dt . (10)

For residues that display more complex internal dy-
namics, an extended formalism can be used,

CI(t) = S2 + (1 − S2
f ) e−t/τf + (S2

f − S2) e−t/τs ,(11)

where τf and τs are two independent time constants
for the fast (ps) and slow (ns) internal motions re-
spectively, S2

f and S2 are the corresponding squared

generalized order parameters and S2 = S2
f S2

s .
Typically, the model-free parameters, i.e., the order

parameters and time constants of internal motions, are
determined by nonlinear minimization of χ2 (Palmer
et al., 1991),

χ2 =
M∑

j=1

(Rj − R̂j )
2/σ2

j , (12)

where Rj is the experimental value of the relaxation
constant, R̂j is the corresponding theoretical value, σj

is the uncertainty of j th relaxation constant, and M is
the total number of relaxation measurements. Usually
M = 3 and Rj = {R1, R2, NOE} when the relaxation
data are collected at a single magnetic field. The theor-
etical value R̂j is back-calculated for given model-free
parameters using Equations (1–3). A good estimation
of the molecular rotational diffusion tensor, especially
the degree of anisotropy, is essential for proper inter-
pretation of the relaxation data. Several methods have
been proposed and they generally work well for good
quality data sets (Kroenke et al., 1998; Pawley et al.,
2001; Osborne and Wright, 2001).

Equation 11 is a more general formalism for de-
scribing the internal motions and thus often provides a
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better fit to the relaxation data (Tjandra et al., 1995).
However, the data might be over fit and the presence
of random noise in the experimental data not properly
accounted for. In practice, an optimal functional form,
i.e., model, needs to be selected to fit the data for
each residue. Five models with various combinations
of model-free parameters are commonly used in the
model-free analysis. They are model 1 {S2}, model 2
{S2, τe}, model 3 {S2, Rex}, model 4 {S2, τe, Rex} and
model 5 {S2

f , S2
s , τs}. In models 1, 3 and 5, τf → 0 is

assumed. Rex is assumed to be negligible when absent.
In models 1-4, motions on the nanosecond time scale
are assumed to be negligible, i.e., S2

s = 1. The relax-
ation data are fit to each model. An optimal model is
then selected based on the fitting results.

Model selection theory and implementation

Model selection is an important topic in statistics
and has been studied extensively in various contexts
(Akaike, 1974; Wax and Ziskind, 1989; Burnham and
Anderson, 1998). For example, one of the critical
problems in linear prediction is the correct estimation
of the number of sinusoids present in the time domain
signals (Koehl, 1999). For the application of model-
free analysis, the dominant protocol currently in use
is based on step-up hypothesis testing using χ2 statist-
ics and F-tests (Mandel et al., 1995). While it greatly
reduces arbitrariness in model selection, this protocol
still has several limitations. First, subjective judgment
is required in deciding on the significance levels for
the tests. Different choices lead to inconsistent model
selections. In addition, the model selection also de-
pends on whether step-up or step-down testing is used.
Second, only nested models can be tested. It is not
possible to compare all five models simultaneously.
Ambiguous selection can occur, for example, when
both models 2 and 3 are favorable in F-tests. Third,
F-tests are not applicable when the number of fitting
parameters in any of the models equals to the number
of inputs. Last, expensive Monte Carlo simulations are
required in order to estimate the χ2 and F-distributions
necessary for hypothesis testing.

Alternatively, another class of protocols, recently
introduced to model-free analysis by d’Auvergne and
Gooley (2003), is based on frequentist techniques.
The idea is to achieve the best balance between bias
(oversimplification) and variance (incorporation of ex-
perimental noise) by identifying the models that yields
the smallest expected discrepancy. A discrepancy can
be any measure of lack of fit and the expected discrep-

Figure 1. Time dependence of the RMSD between snapshots
and the average structure from the 10 ns trajectory of the
DHFR/THF/NADPH ternary complex in explicit water. The bottom
trace was computed by including only backbone atoms (Cα , C, O
and N) and the top trace by including all heavy atoms.

ancy is the average value of the discrepancy between
the true data set and result of fitting to a sample set.
Since in practice the true set is not available, the ex-
pected discrepancy can never be calculated. Instead,
an estimation can be made using the sample data set.
Such an estimation is called a ‘criterion’. Among vari-
ous information theoretic criteria, Akaike’s Inform-
ation Criterion (AIC) (Akaike, 1974) and Bayesian
Information Criterion (BIC) (Schwarz, 1978) are the
simplest and have been shown to provide appropri-
ate model selections for the model-free analysis using
some synthetic relaxation data sets generated from
some general three-dimensional grids of {S2, τe, Rex}
and {S2

f , S2
s , Rex} (d’Auvergne and Gooley, 2003).

Using the definition of empirical Kullback–Leibler
discrepancy (Kullback and Leibler, 1951), AIC and
BIC are simply given as

AIC = χ2 + 2k , (13)

BIC = χ2 + k ln M , (14)

where k is the number of independent parameters in
the model and M is the dimension of the sample
data set, i.e., the number of independent relaxation
measurements. Additional description of related in-
formation theory can be found in Burnham and An-
derson (1998). Using AIC and BIC, all five models
are compared simultaneously and expensive Monte
Carlo simulations are totally unnecessary for mak-
ing a selection. Note that a graphical approach based
on Bayesian statistics was also proposed recently by
Levy and coworkers (Jin et al., 1998; Andrec et al.,



247

Figure 2. Difference between CI(∞), estimated by Equation (16), and Ctail, the average of the last 0.5 ns of the internal correlation function.
The full length of the correlation functions is tmax = 3 ns. The difference is very small (between ± 0.005, indicated by the dotted lines) for
most residues, indicating convergence. However, significant differences are observed for some residues.

1999, 2000). However, its practical implementation
for model-selection is not yet realized.

The model selection via hypothesis testing was
implemented following the flow diagram in (Mandel
et al. (1995) with small modifications: when both
models 2 and 3 are favorable in F-tests, the one with
smaller χ2 is selected; when neither model 2 nor 3 is
selected, models 4 and 5 are considered (never go back
to model 1). The acceptance rule for models 4 and 5 is
as follows: if M = 3, model 4 or 5 is accepted only if
χ2 ≤ δ, with δ being a small number; if M > 3, model
4 or 5 is accepted as long as χ2 ≤ χ2(α′), where α′ is
an empirically chosen critical value. If both models 4
and 5 satisfy the acceptance rule, the one with lower
χ2 is selected; if neither is accepted, it is decided that
no model sufficiently fits the data and the one with
smaller χ2 is chosen as the best model. Note that F-
tests are possible between models 4 & 2, 4 & 3, and
5 & 2 when M > 3, however, they are not commonly
used. Also note that even though this protocol is not
purely based on hypothesis testing, we will still refer
to it as the hypothesis testing model selection in the
following discussions.

Implementation of AIC and BIC for model selec-
tion is straightforward. The model with the smallest
criterion is selected as the best model. As neither AIC
nor BIC provides any information on the quality of fit
to the best model, except what can be induced from χ2

of fit, additional Monte Carlo simulations are used to
determine whether the selected model can sufficiently
describe the data. For models 1, 2 and 3, the fit is
considered to be sufficient only if χ2 ≤ χ2(α = 0.1),
with α being an empirically chosen critical value. For
models 4 and 5, the acceptance rules used in the hypo-
thesis testing model selection (see above) are used to

determine the quality of the fit. If the selected model
does not sufficiently describe the data, it is decided
that none of the models can sufficiently fit the data
and no effort is attempted on selecting an alternative
model. Note that the Monte Carlo simulation step is
not part of the AIC or BIC model selection, but an
additional check of fit quality for practical purposes.

MD simulation

To explore the accuracy of motional parameters ob-
tained from the model-free analysis and their con-
sistency with the underlying dynamics, we utilized a
10 ns MD trajectory of the DHFR/DHF/NADPH tern-
ary protein complex in explicit water generated using
the CHARMM program (Brooks et al., 1983). Di-
hydrofolate reductase (DHFR) catalyzes the reduction
of dihydrofolate (DHF) to tetrahydrofolate (THF) with
the cofactor NADPH. Previous MD and NMR studies
(Radkiewicz and Brooks, 2000; Osborne et al., 2001)
have shown that rich, diverse internal dynamics exists
at multiple time scales and this is believed to have
significant consequences in the catalytic function of
DHFR. Since the MD protocol has been given in detail
in Radkiewicz and Brooks (2000), we only briefly de-
scribe the simulation methodology here. The protein
was characterized by the CHARMM param22 para-
meter set (MacKerell, Jr. et al., 1998), the water by
the TIP3P model (Joregensen et al., 1983), NADPH
by a force field developed by Pavelites et al. (1997),
and DHF by a force field constructed by Radkiewicz
and Brooks (2000). A van der Waals switching func-
tion between 8 and 11 Å and an electrostatic shifting
function were used. The SHAKE algorithm (Ryckaert
et al., 1977) was applied and a time step of 0.002 ps
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was used. The coordinates were sampled every 200
steps and a total number of 25,000 snapshots were col-
lected. The stability of the trajectory has been accessed
by studying the time evolution of root-mean-square
deviation (RMSD) from the X-Ray structure, side
chain contacts and hydrogen bonding patterns. It was
found that the core structure of the protein complex re-
mained very close to the initial X-Ray structure, while
flexible loops were allowed to change conformation.

Data analysis

The key step to calculating the relaxation constants,
R1, R2 and NOE, from a MD trajectory is computing
the angular auto-correlation function of internal mo-
tions for each N-H bond vector. Each snapshot was
first superimposed onto the average structure of the
whole trajectory by a least-squares fit of the protein
backbone atoms. The overall molecular tumbling was
thus removed and coordinates in the same molecular
reference frame resulted. Figure 1 shows the back-
bone and heavy atom RMSD values from the average
structure as a function of time. The internal correlation
functions of backbone N-H vectors were then com-
puted using Equation 8. Note that fluctuations in the
internuclear separation were not included because the
length of all hydrogen-heavy atom bonds was fixed by
SHAKE throughout the simulation. It has been shown
previously that the effect of SHAKE on simulated
order parameters is negligible (Pfeiffer et al., 2001).

Due to the finite length of the MD trajectory, the
spectral densities cannot be computed directly using
Equation (4). Instead, the internal correlation function
is partitioned into ‘fast’ and ‘slow’ parts (Brüschweiler
et al., 1992). Only the fast part is explicitly computed
and the slow part is approximated by a plateau value:

J (ω) ≈ 2
∫ tmax

0
CI(t)CO(t) cos(ωt) dt +

2
∫ ∞

tmax

CI(∞)CO(t) cos(ωt) dt , (15)

where tmax is the maximum length of explicitly com-
puted correlation function. When the correlation func-
tion reaches a plateau value, CI(∞) can be estimated
from the equilibrium orientational distribution of the
dynamics trajectory (Levy et al., 1981; Brüschweiler
et al., 1992):

CI(∞) = 4π

5

2∑
m=−2

|〈Y2m(θ,φ)〉|2 , (16)

Figure 3. Internal angular autocorrelation functions of backbone
N-H vectors for residues (a) Asp142, (b) Ala19, (c) Val119 and
(d) Arg44. The broken lines indicate the values of CI(∞) given by
Equation 16. While (d) is representative of most residues, (a)-(c) are
examples of unconverged correlation functions. Note that Ala19 has
the largest difference between CI(∞) and Ctail among all residues.

with (θ,φ) being the polar angles of the N-H bond
orientation vector µ̂. However, for residues with signi-
ficant motions on the nanosecond time scale, a plateau
value might not be reached by tmax. As a result, the
correlation function might be discontinuous at tmax in
Equation 15, which introduces undesirable artifacts
in the spectral density function. This issue will be
discussed in more detail in the results section.

The overall tumbling was assumed to be axially
symmetric with τm = 1/(4D⊥ + 2D‖) = 9 ns
and Dratio = D‖/D⊥ = 1.2. The 15N CSA was
set to be �σ = −170 ppm. These values are sim-
ilar to the experimental results (Osborne and Wright,
2001). Once the spectral densities at five frequencies
are available, the relaxation constants can be com-
puted using Equations 1–3. The NMR analysis module
in CHARMM (Brüschweiler et al., 1992) was used
with minor modifications. The contributions of mi-
crosecond/millisecond time scale motions to R2 were
added afterwards using the results of analyzing an
experimental data set acquired on a similar complex
(Osborne and Wright, 2001). The Rex terms were
assumed to scale quadratically with respect to the
strength of magnetic field.

Fitting of the relaxation data to model-free mod-
els was carried out using the ModelFree 4.15 software
package (Palmer et al., 1991; Mandel et al., 1995).
The same values of τm, Dratio and CSA were used
in all analysis. The N-H bond length was set to be
0.997Å instead of the common value of 1.02Å to be
consistent with the equilibrium N-H bond length of
the dynamics trajectory. Grid search was always used
before χ2 minimization. Twenty increments were used
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Figure 4. Values of R1, NOE and S2 at 500 MHz with tmax = 2, 3
and 4 ns. Except for a few residues such as Ala19 and Gly67, the re-
laxation constants only differ slightly with respect to tmax. S2 is first
estimated as CI(∞), then shifted to Ctail if |CI(∞)−Ctail| > 0.005,
where Ctail is average of the last one sixth of the correlation
function.

in the grid search for each parameter except that fifty
increments were used for τs in model 5. The purpose
of a finer grid is to avoid potential failure of the nonlin-
ear minimization due to a larger dynamic range. The
search ranges were set to be between 0 and 1 for the
order parameters, 0 and 10 s−1 for Rex, 0 and 1000 ps
for τe in models 2 and 4, and 0 and 4500 ps for τs in
model 5. All Monte Carlo simulations were performed
with ModelFree 4.15 option ‘sim_type’ set to ‘pred’.

Results and discussion

Convergence of simulated relaxation data

As discussed previously, due to the finite length of
the MD trajectory, the autocorrelation function is only
explicitly computed up to a maximum time tmax and
Equation 15 has to be used to construct the spectral

Figure 5. Simulated relaxation constants extracted from a 10 ns
dynamics trajectory with tmax = 3 ns at two magnetic fields that
correspond to proton Larmor frequencies of 500 and 600 MHz
respectively.

density functions. This partitioning of the correla-
tion function is a good approximation to the exact
definition of Equation 4 for most residues. As shown
in Figure 2, the difference between CI(∞), com-
puted from Equation 16, and Ctail, the average of the
last 0.5 ns of the correlation function, is very small
(< 0.005) for most residues, indicating convergence.
However, for some residues, typically those which dis-
play significant motions on the nanosecond time scale,
the internal correlation function does not fully decay
to a plateau value by tmax, leading to a significant
difference between CI(∞) and Ctail. Some examples
of the correlation functions are shown together with
the corresponding values of C(∞) in Figure 3. The
discontinuity of C(t) at tmax leads to artifacts in the
spectral density function, which, in turn, results in
inconsistent relaxation constants. While the ultimate
solution is running a longer simulation, in the present
study, the discontinuity was removed simply by re-
placing CI(∞) with Ctail when the difference was
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Figure 6. Model selection results using the relaxation data at (a) 500 MHz, and (b) both 500 and 600 MHz. The broken line connects IDs of
the models selected by hypothesis testing (HT) for adjacent residues. Blue triangles indicate the models selected by AIC and red circles show
those selected by BIC. A negative model ID indicates that the selected model can’t sufficiently fit the data.

greater than 0.005. Since the purpose of this study
is not to compare the simulated results with exper-
imental values, this approach is justified as long as
self-consistency is maintained. Note that we avoid
parameterizing the raw correlation functions (e.g., in
Pfeiffer et al. (2001)) with the intention of keeping the
underlying internal dynamics as realistic as the quality
of the simulation allows.

As the correlation function becomes increasingly
noisy with longer time, it is necessary to examine the
convergence of simulated relaxation constants with re-
spect to tmax. The transverse relaxation constant R2 is
mainly determined by the zero frequency component
of the spectral density function and converges quickly
with respect to tmax. R1 and NOE depend on the
high-frequency components and have a stronger de-
pendence on tmax. Figure 4 compares values of R1,
NOE and S2 computed with tmax = 2, 3 and 4 ns. R2
values are virtually the same for all three cases and not
shown in the figure. Overall convergence is very good
except for a few residues such as Ala19 and Gly67.
The final relaxation data sets used in the following
model-free analysis were generated with tmax =3 ns,
which are shown in Figure 5. Excluding proline and

terminal residues, relaxation constants were computed
for a total of 147 backbone amide 15N nuclear spins.

Model-free analysis

Uncertainties in the relaxation constants are necessary
to estimate the χ2− and F-distributions via Monte
Carlo simulations. Arbitrary relative uncertainties of
3.0%, 2.5%, and 3.5% were assigned to R1, R2 and
NOE respectively. In addition, a minimum uncertainty
of 0.02 is imposed for NOEs to prevent assigning
unrealistically small uncertainties for some residues
with very small NOEs. These values are typical for
experimental relaxation data sets.

Model selection
Model selection was made following the protocols
described in the previous section. Standard critical val-
ues of α = 0.1 for χ2 and α = 0.2 for F-tests were
used in hypothesis testing. δ = 0.01 and α′ = 0.05
were used in the acceptance rule for models 4 and
5. 200 Monte Carlo simulations were carried out to
generate all χ2- and F-distributions.

The model selection results are summarized in Fig-
ure 6 and Table 1. Figure 6a compares the results of
model selection by hypothesis testing (denoted HT),
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Table 1. Summary of model selection results. The numbers in par-
enthesis indicate the number of residues for which particular models
are selected but then found to insufficiently describe the relaxation
data

Data Protocol Model 1 Model 2 Model 3 Model 4 Model 5

HT 93(0) 28(0) 7(0) 6(0) 13(0)

Single AIC 88(0) 33(0) 6(0) 7(0) 13(0)

Field BIC 77(0) 37(0) 8(0) 7(0) 18(0)

HT 85(0) 31(0) 7(0) 7(2) 10(5)

Double AIC 62(0) 40(1) 12(0) 7(1) 19(5)

Field BIC 59(0) 42(1) 12(0) 7(1) 20(5)

AIC and BIC when only data at 500 MHz were ana-
lyzed. Similar models were selected for most residues
by all three protocols and all residues were sufficiently
fit by the selected models. AIC selected the same
models as HT except for 6 residues (model 2 instead
of model 1 for five residues, and model 4 instead
of model 3 for one residue), while BIC selected dif-
ferent models for about twenty residues, for which
models 2 and 5 were preferred, indicating that BIC
is more sensitive in detecting both fast (ps) and slow
(ns) internal motions. Examination of the correlation
functions shows that these motions are genuine. It is
evident that hypothesis testing and AIC selected over-
simplified models and caused under-fitting for these
residues. These statements will be supported with
more detail in the next two sections.

Figure 6b compares the models selected by the
three protocols when the relaxation data at both fields
were fit together. The selection results are different
from those shown in panel (a) in several ways. First,
many residues were fit by models of higher complexity
for all three protocols. Second, AIC showed a signific-
ant improvement in the performance and selected the
same models as BIC except for three residues: model
1 was selected for Ile50, Leu54 and Phe125 by AIC,
while models 2, 2 and 5 were selected respectively by
BIC. The reason is that AIC may perform poorly if
the number of parameters is large with respect to the
data size (Burnham and Anderson, 1998). On the con-
trary, HT benefited less from the larger data size and
performed poorly compared to AIC and BIC, failing to
select the most appropriate models for over 20% of the
residues. The problem of over-simplification is more
evident. Third, several residues cannot be sufficiently
fit by any model. χ2 for these residues ranges from
below 10 to about 100 when fit to the best models,

with the largest χ2 being 93.5 for Ala19. Note that
similar models were selected and could sufficiently
describe the relaxation data at 500 MHz. Therefore,
the availability of additional data does not only help
to identify the presence of nanosecond time scale mo-
tions for more residues, but also help to reveal the
highly complex nature of the underlying dynamics.

In summary, for model selection in the model-free
analysis of NMR relaxation data, BIC seems to be
the optimal protocol, while AIC performs nearly as
well when data is available at two magnetic fields.
It is evident that hypothesis testing has severe draw-
back of selecting oversimplified models. The impacts
of different model selections on the motional para-
meters will be discussed in the next section. In ad-
dition, the computational cost of the BIC and AIC
model selection is much lower than that of hypothesis
testing.

Accuracy of model-free parameters
In this section, we compare the model-free results to
the values directly computed from the dynamics tra-
jectory, and discuss the impacts of model selection on
the accuracy of the analysis. In order to make dir-
ect comparison, the correlation time of nanosecond
time scale motions, τs , obtained by fitting to model 5
needs to be converted to the effective correlation time
defined in Equation 10. Substituting Equation 11 into
Equation 10 and assuming τf → 0, we have

τeff = S2
f − S2

1 − S2 τs . (17)

The uncertainty of τeff was converted from that of τs

by the same linear relation. The MD values of the
effective correlation time were obtained by direct in-
tegration of the raw correlation functions according to
Equation 10.

When data at a single field were used, AIC and
HT selected essentially identical models (see previ-
ous section). For clarity, Figure 7 only compares
the model-free results obtained with the HT and BIC
model selection protocols to the MD values. Among
the three motional parameters, the order parameters
were reproduced most accurately. As shown in the
top panel, the relative errors are below 5% for most
residues except for a few in the most flexible regions.
On average, the order parameters were over-estimated
by about 1.5%. The average absolute error of S2 is
0.012 ± 0.014 for HT and 0.011 ± 0.013 for BIC,
with the maxima both being 0.097 for Gly121. Note
that the different, usually more complex, models se-
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Figure 7. Comparison of model-free parameters obtained by
model-free analysis of simulated 15N relaxation data at 500 MHz
with corresponding values directly computed from the dynamics tra-
jectory. The results of model-free analysis with HT model selection
are shown by black crosses and those with BIC model selection by
red circles. The MD/exact values are represented by green pluses.
The dotted lines connect the values of parameters obtained with the
methods indicated by the colors. Results obtained with AIC model
selection are similar to those of using HT model selection and not
shown.

lected by BIC all led to more accurate S2 values.
Rex terms were also accurately reproduced. All sig-
nificant Rex terms were recovered except for a few
residues with very small Rex. With the BIC model
selection, more small Rex terms were properly iden-
tified and no spurious Rex terms occurred. However,
this may not be typical when experimental data are
to be analyzed. The reason is that inconsistency may
exist between the relaxation constants, as they are sep-
arate measurements, and would lead to spurious, small
Rex, which does not necessarily imply the presence of
slow motions on the microsecond to millisecond time
scale. The largest deviation between the model-free
and MD values was observed in the effective correl-
ation times, τeff. BIC did a better job in detecting the
nanosecond time scale motions than HT and AIC for
several residues, such as Met20 and Asp37, which was

Figure 8. Comparison of model-free parameters from model-free
analysis of simulated 15N relaxation data at both 500 and 600 MHz
with corresponding values directly computed from the dynamics
trajectory. Notations are the same as those in Figure 7. No model
sufficiently fit the data for some residues. Results of fitting the data
to the best models were shown instead, which are indicated by ∗’s
in τeff and Rex panels.

reflected in more accurate estimates of the effective
correlation times. However, τeff was still significantly
underestimated for many residues, especially those
with τeff ∼ 200 ps. For some of these residues, such
as Leu24 and Gly121, the underestimation can be at-
tributed to the presence of significant Rex contribution
and the limit of three parameters per model prevents
incorporating τs and Rex simultaneously. For others,
such as Arg52 and Val88, it seems that motions on
the nanosecond time scale have small magnitude and
the model-free analysis is insensitive in detecting these
motions. The underlying internal dynamics will be ex-
amined in more detail in the next section. Note that
arbitrarily lowering the uncertainties of the relaxation
constants, e.g., to less than 1%, could reveal more
nanosecond time scale motions and also lead to more
residues that could not be fit by any model (data not
shown). However, such small uncertainties are not
realistic experimentally.
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Figure 9. Examples of the internal correlation function for residues that were fit by models 1 to 4. The model selection was made by BIC using
data at both fields.

Table 2. Comparison of the average values of motional para-
meters obtained by model-free analysis (MF) and computed
from the dynamics trajectory (MD), categorized by the models.
Model selection was made based on BIC using simulated relax-
ation data at both fields. Results of fitting to the best model were
included when no model sufficiently described the relaxation
data

Model τeff / ps S2

selection MD MF MD MF

Model 1 79 ± 72 0 0.88 ± 0.03 0.89 ± 0.03

Model 2 95 ± 64 27 ± 17 0.80 ± 0.08 0.81 ± 0.08

Model 3 75 ± 82 0 0.90 ± 0.02 0.91 ± 0.02

Model 4 141 ± 97 27 ± 13 0.75 ± 0.10 0.78 ± 0.08

Model 5 336 ± 150 370 ± 177 0.64 ± 0.16 0.65 ± 0.16

In Figure 8, we examine the results of fitting
relaxation data at both fields simultaneously to the

model-free models. A summary is given in Table 2.
Similar observations can be made, i.e., Rex and S2

were recovered quite accurately while τeff was signi-
ficantly underestimated for many residues. The effect-
ive correlation times were more accurately estimated
for several residues, such as Gln65 and Arg71, which
was a direct consequence of improved ability in de-
tecting nanosecond time scale motions with more data.
More small Rex contributions were properly identi-
fied by AIC and BIC. There is an obvious reduction
in the uncertainties of nonlinear least-squares fitting.
However, it is not always associated with an improve-
ment in the accuracy, as compared to the MD values.
The underestimation of the fitting uncertainty is prob-
ably a consequence of neglecting the ambiguities in
the model choice (Andrec et al., 1999). An inter-
esting observation is that for the residues that can
not sufficiently described by any model, the motional
parameters extracted from fitting to the best models
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still reproduce the MD values reasonably well. As
discussed previously, similar models were selected by
BIC and sufficiently described the data at 500 MHz.
This can be considered as an indication of complex
underlying internal dynamics. When analyzing exper-
imental data sets, the selected model might fail to
provide a sufficient fit simply because of noisy data.
It is possible to distinguish these two cases by ex-
amining the uncertainties and χ2 value of the fit. In
the current analysis, the error bars of the motional
parameters are similar and the residual χ2 of fit is
reasonably small, which can be considered as an in-
dication that the model fails to fit the data because of
complex motions. This is also anticipated to be true
when analyzing experimental relaxation data sets.

Consistency with underlying dynamics
Consistency of the model-free results with the under-
lying internal dynamics has also been examined. Ex-
amples of the internal correlation functions are shown
in Figures 9 and 10. Model selection was made by BIC
using relaxation data at both fields. In general, most
residues fit by models 1 and 3 do display simple in-
ternal dynamics. The corresponding correlation func-
tion can be well described by a single exponential
that quickly decays to a plateau value. The examples
shown in Figure 9a are representative of most residues
fit by models 1 and 3. However, the correlation func-
tions of some residues fit by models 1 and 3, such as
those shown in Figure 9b, are actually similar to those
of residues fit by model 2, shown in Figure 9c. There
is not always a distinctive difference in the underlying
ps/ns time scale internal dynamics between residues fit
by models 1 and 3 and those fit by model 2. As shown
in Table 2, the average MD effective correlation time
for residues fit with model 2 is only slightly higher
than that of residues fit by model 1 and similar to that
of residues fit by model 3. Noticeably, some residues
fit by models 1-3 do display significant nanosecond
time scale motions, such as Arg52 and Val88, with
corresponding S2

s estimated to be about 0.9 or greater.
The model-free analysis seems to be insensitive in de-
tecting nanosecond time scale motions of relatively
smaller magnitude; as a result, the effective correlation
time is significantly underestimated. For residues with
a large Rex contribution, due to the limit of three para-
meters in the models, nanosecond time scale motions
can not be properly identified. As shown in Figure 9,
residues fit by model 4 can display significant nano-
second time scale motions. The effective correlation
times are most severely underestimated and the order

Figure 10. Examples of internal correlation functions for residues
sufficiently fit by (a) model 5 and (b) no model. The model selection
was made by BIC using simulated relaxation data at both fields. For
residues shown in panel (b), the best model is model 4 for Leu24
and Gly121 and model 5 for the rest.

parameter most severely overestimated compared to
residues without significant Rrex contributions.

The correlation function of residues that were fit
by model 5, shown in Figure 10a, confirms the pres-
ence of nanosecond time scale internal motions. The
squared order parameter for these motions ranges from
below 0.6 to over 0.9. Even though very few correl-
ation functions can be completely described by the
functional form of Equation 11, when the presence of
nanosecond time scale motions is properly identified,
both the order parameter and effective correlation time
can be predicted by the model-free analysis quite ac-
curately. This is also true for the residues that could
not be sufficiently fit by any model but were best
described by model 5. As shown in Table 2, the av-
erage values of both the squared order parameters
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Figure 11. Comparison of the motional parameter space of (a) DHFR and (b) over a dozen of other proteins, which include E. coli RNase H
(Tugarinov et al., 2001), E. coli adenylate kinase (Tugarinov et al., 2002), chemokine eotaxin-3 (Ye et al., 2001), the human – E. coli thioredoxin
chimera (Dangi et al., 2002), plastocyanin in both oxidation states (Bertini et al., 2001), the TGFβ type II receptor extracellular domain (Deep
et al., 2003), four protein inhibitors of serine proteinases (OMTKY3, OMTKY3∗, OMIPF3, and OMIPF3∗) (Song and Markley, 2003), RNase
A (Cole and Loria, 2002), reduced plastocyanin (Ma et al., 2003), reduced and oxidized glutaredoxin (Kelley et al., 1977), and apo calbindin
D9k (Akke et al., 1993). All the motional parameters were obtained by model-free analysis of backbone 15N relaxation data, simulated from
a 10ns MD trajectory for DHFR and experimentally measured for the rest. The correlation time, τ, was set to τs when τs was present in the
model and τf when τs was not used in the model. When the data was fit by models 1 and 3, τ was set to 0.5 ps in order to plot on the log-scale
y axis.

and effective correlation times obtained by the model-
free analysis agree very well with the MD values for
residues fit by model 5. Also note that the correlation
functions shown in Figure 10b do not necessarily dis-
play higher complexity than those of residues fit by
model 5, shown in Figure 10a.

Generality of the study

There is an important issue about the generality of the
findings described above, as only a single protein has
been used. Even though DHFR has been shown to be
a very interesting system that displays rich, diverse in-
ternal dynamics (Osborne et al., 2001) and is believed
to be representative of the internal dynamics com-
monly seen in other proteins, it is necessary to validate
it, for example, by comparing the accessible motional
parameter spaces covered by DHFR and other pro-
teins. As the most significant difference observed in
the three model selection protocols lies in the ability to
detect the presence of nanosecond timescale motions,
we examine the {S2, τe} space accessible to DHFR
and over a dozen of other proteins of various sizes
and types, for which dynamic data were published re-

cently. As shown in Figure 11, the parameter space
accessible to DHFR is quite representative of that of
this ensemble of proteins. In addition, only a limited
portion of the full parameter space is commonly ac-
cessible to proteins. On the contrary, it seems that the
general grids used in a previous study (d’Auvergne
and Goolley, 2003) do not reflect this limited access-
ible motional space. This is likely the reason that BIC
instead of AIC is found to be the optimal protocol for
model selection in model-free analysis. For the same
reason, the findings presented in current study seem
to be more relevant to model-free analysis of NMR
relaxation measurements of proteins.

Conclusions

We have used molecular dynamics simulations to ex-
amine the popular model-free approach for analyzing
the NMR relaxation measurements. Using a 10 ns ex-
plicit solvent dynamics trajectory on a DHFR ternary
complex, backbone amide 15N relaxation constants
were computed and then analyzed using the model-
free approach. By comparing the model-free results
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with the values directly computed from the trajectory
and by examining the consistency with the underly-
ing internal dynamics, we were able to assess the
efficiency of the model-free analysis and study the
influence of model selection protocols on the results.

It was found that current protocol of model selec-
tion via step-up hypothesis testing is inefficient and
suboptimal. Oversimplified models are often selected,
which leads to under fitting, as previously shown by
d’Auvergne and Gooley (2003). Instead, model selec-
tion based on Bayesian Information Criterion (BIC)
seems to be an optimal protocol. No subjective para-
meter such as significance levels is required and all
models are compared simultaneously. More appro-
priate models can be selected and the problem of
under fitting is reduced. Akaike’s Information Cri-
terion (AIC) also performs well when data is available
at two magnetic fields. However, AIC performs almost
as poorly as hypothesis testing when data is only avail-
able at a single field. Therefore, BIC is preferred for
the model selection in the model-free analysis. In addi-
tional, the AIC and BIC protocols are computationally
more efficient, as Monte Carlo simulations are only
necessary for generating χ2-distributions to determine
the quality of the final fit.

In the limit of uncorrelated overall tumbling and
internal motions, the model-free analysis seems to be
able to provide quantitative information on the internal
dynamics. Despite a slight overestimation, the order
parameters can be recovered quite accurately. Signi-
ficant contributions of micro/millisecond motions to
the traverse relaxation can also be reliably identified.
However, the effective correlation times are often sig-
nificantly underestimated. Even though BIC greatly
reduces the problem of under fitting, the model-free
analysis seems to be intrinsically insensitive in detect-
ing the presence of nanosecond time scale motions
of relatively small magnitude. Sometimes nanosecond
time scale motions with a corresponding squared order
parameter as low as 0.9 can go undetected, even with
good quality data available at two magnetic fields.
Despite the fact that the underlying dynamics is gen-
erally more complex than can be described by the
model-free models, both the order parameter and ef-
fective correlation time can be accurately predicted
when the presence of nanosecond time scale motions
is properly identified.

A critical assumption of the model-free analysis
is that the overall tumbling can be uncoupled from
the internal dynamics. This has been expected to be
a good approximation for well-folded proteins if the

amplitude of internal motions is sufficiently small and
the time scale separation between overall tumbling
and internal motions is sufficiently large (Case, 2002).
Recently, this assumption was called into question
(Tugarinov et al., 2001, 2002). By explicitly model-
ing the coupling between global tumbling and internal
motions using the two-body Slowly Relaxing Local
Structure (SRLS) theory, dramatic discrepancies with
the model-free analysis were reported in both the order
parameters and correlation times for several proteins.
It is not clear at this point whether the model-free
or SRLS analysis provides a more realistic picture of
the internal dynamics of proteins. One possible way
to address this question is carry out a very long MD
simulation, preferably on complex systems with di-
verse internal motions such as DHFR. This will be
addressed in forthcoming publications.
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